Early biochemical effects after unilateral hypoxia–ischemia in the immature rat brain

نویسندگان

  • Simone N. Weis
  • Rebeca V.A. Schunck
  • Leticia F. Pettenuzzo
  • Rachel Krolow
  • Cristiane Matté
  • Vanusa Manfredini
  • Maria do Carmo R. Peralba
  • Carmen R. Vargas
  • Carla Dalmaz
  • Angela T.S. Wyse
  • Carlos A. Netto
چکیده

Perinatal hypoxia-ischemia (HI) gives rise to inadequate substrate supply to the brain tissue, resulting in damage to neural cells. Previous studies at different time points of development, and with different animal species, suggest that the HI insult causes oxidative damage and changes Na+, K+-ATPase activity, which is known to be very susceptible to free radical-related lipid peroxidation. The aim of the present study was to establish the onset of the oxidative damage response in neonatal Wistar rats subjected to brain HI, evaluating parameters of oxidative stress, namely nitric oxide production, lipoperoxidation by thiobarbituric acid reactive substances (TBA-RS) production and malondialdehyde (MDA) levels, reactive species production by DCFH oxidation, antioxidant enzymatic activities of catalase, glutathione peroxidase, superoxide dismutase as well as Na+, K+-ATPase activity in hippocampus and cerebral cortex. Rat pups were subjected to right common carotid ligation followed by exposure to a hypoxic atmosphere (8% oxygen and 92% nitrogen) for 90 min. Animals were sacrificed by decapitation 0, 1 and 2 h after HI and both hippocampus and cerebral cortex from the right hemisphere (ipsilateral to the carotid occlusion) were dissected out for further experimentation. Results show an early decrease of Na+, K+-ATPase activity (at 0 and 1 h), as well as a late increase in MDA levels (2 h) and superoxide dismutase activity (1 and 2 h after HI) in the hippocampus. There was a late increase in both MDA levels and DCFH oxidation (1 and 2 h) and an increase in superoxide dismutase activity (2 h after HI) in cortex; however Na+, K+-ATPase activity remained unchanged. We suggest that neonatal HI induces oxidative damage to both hippocampus and cortex, in addition to a decrease in Na+, K+-ATPase activity in hippocampus early after the insult. These events might contribute to the later morphological damage in the brain and indicate that it would be essential to pursue neuroprotective strategies, aimed to counteract oxidative stress, as early as possible after the HI insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of postnatal hypoxia-ischemia on cholinergic neurons in the developing rat forebrain: choline acetyltransferase immunocytochemistry.

We studied the effect of early postnatal hypoxia-ischemia on cholinergic neurons in the developing rat forebrain using immunohistochemistry for choline acetyltransferase (ChAT). In 7-day-old rat pups, hypoxia-ischemia was induced in one cerebral hemisphere by combining unilateral carotid ligation with exposure to 8% oxygen for 2.5 h. This procedure caused brain injury in the hemisphere ipsilate...

متن کامل

Flunarizine limits hypoxia-ischemia induced morphologic injury in immature rat brain.

We examined the impact of pre-treatment with the calcium antagonist flunarizine on the development of hypoxic-ischemic brain injury in the immature rat. Unilateral carotid artery ligation and subsequent exposure to 2 hours of 8% oxygen in 7-day-old rats was used as a model for perinatal hypoxic-ischemic encephalopathy. This procedure leads to atrophy in the cerebral hemisphere ipsilateral to ca...

متن کامل

Regional cerebral blood flow during hypoxia-ischemia in immature rats.

Immature rats subjected to a combination of unilateral common carotid artery ligation and hypoxia sustain brain damage confined largely to the ipsilateral cerebral hemisphere. To ascertain the extent and distribution of ischemic alterations in the brains of these small animals, we modified the Sakurada technique to measure regional cerebral blood flow using carbon-14 autoradiography. Seven-day-...

متن کامل

Hypoxia-ischemia produces focal disruption of glutamate receptors in developing brain.

We examined the impact of a perinatal hypoxic-ischemic insult on the distribution of glutamate receptors in developing brain. We used a well characterized rodent model for perinatal hypoxic-ischemic encephalopathy, unilateral carotid artery occlusion followed by exposure to 8% oxygen for 2.5 h in 7-day-old rat pups. This preparation results in focal neuronal damage in striatum, hippocampus, and...

متن کامل

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Developmental Neuroscience

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2011